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ABSTRACT 

The Space Shuttle community is currently developing a 
number of knowledge-based tools, primarily expert 
systems, to  support Space Shuttle operations. This 
effort is based on the wide-spread realization of the 
potential benefits of these tools for premission flight 
planning and real-time flight support. Evolution of 
these tools into the operations environment is  just 
beginning. 

It is proposed that anticipating and responding to  the 
requirements of  the operations environment wil l  
contribute to  a rapid and smooth transition of expert 
systems from development to operations, and that the 
requirements for verification are critical t o  this 
transition. 

This paper identifies the verification requirements of 
expert systems to  be used for flight planning and 
support and compares them t o  those of existing 
procedural software used for flight planning and 
support. It then explores software engineering 
concepts and methodology that can be used to  satisfy 
these requirements, t o  aid t rans i t ion f r o m  
development to  operations and t o  support the 
operations environment during the lifetime of expert 
systems. Many of these are similar to  those used for 
procedural software. 

INTRODUCTION 

The range and diversity o f  specialties and 
subspecialties required to  support Space Shuttle 
operations develop an enormous amount of the type 
of skill recently designated "expertise". Expert systems 
to  support flight operations appear to  offer significant 
potential benefits to  flight design and dynamics, such 
as: 

0 Reducing the man ower and resources required for 
flight design and 8 ynamics. 

Reducing the dependency on highly skilled people 
to  intervene periodically in fairly standardized 
tasks, thus freein them for new development or 
nonstandard probgems. 

0 Preventing single-point failures or delays due to  
the unavailability o f  skilled "experts"; and, 

similarly, reserving the "corporate knowledge 
base" should a skilled person become unavailable. 

0 Improving the quality of certain decisions which 
require more factors than  a human can 
comfortably consider at once, but which are no 
problem for a computerized expert system. 

A number of  expert systems have been built and 
others are presently being built 50 that these benefits 
can be realized. Many more can be expected as the 
technology becomes an accepted part  o f  the 
engineer's problem-solving capability and a larger skill 
base is available for their implementation. 

Most o f  the existing systems are considered 
prototypes. However, once in  the operations 
environment, they must satisfy the demands of that 
environment. Because of their potential for affecting 
flight design decisions that have broad and sometimes 
critical implications, engineering confidence in the 
veracity of their results across their lifetime will be of 
foremost importance to  their successful acceptance 
and integration into flight operations. Therefore, 
anticipating and preparing to support verification 
durin the lifetime of the expert system should ensure 

time and the human and computer resources required 
to maintain them. 

Following is a discussion of software requirements in 
the Shuttle operations environment, what can be 
considered a verified expert system, historical 
approaches t o  aid and accomplish verification of 
conventional programs, and, last, approaches that can 
be taken during prototype development to  aid 
verification and ease integration of  expert systems 
into the operations environment. 

that t R eir potential is realized as well as reduce the 

SHUTTLE OPERATIONS SOFTWARE ENVIRONMENT 

Flight design and flight d namics software have an 
erformance 

requirements. Premission conceptual t ight  design 
may require fairly simple analytic models, whereas 
operations flight design will require extremely high 
fidelity models that run much slower than reat- 
time. Fli ht  dynamics, software must support real- 

possible performance achievable under that constraint 

overlapping set of mo d y  eling and 

time pe r? ormance and, at the same time, the best 
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i s  desired. Expert systems for f l ight design and 
dynamics must meet these same modeling and 
performance req u i rements. 

Presently, a great deal of effort is  being made to  
streamline and standardize Shuttle fli ht  desi n and 

flight products and ensuring their quality have been 
explicitly defined and documented. Techniques are 
being implemented to  track product development, to 
ensure that the defined procedures are followed and 
that approved software are used fo r  'product 
generation. Software approved fo r  product 
generation i s  being placed under configuration 
control, and changes must be formally requested, 
approved, and verified prior to  being made available 
to  the flight designers. 

When expert systems are used in the eneration of 

expert system ecision-makin capabilit will be 
embedded in the application so ware, so t at it will 
simply account for a portion of a larger system that is 
under configuration control. 

Greater use of database technology is planned to  
manage f l ight data and ensure i t s  integrity and 
commonality among products. Electronic storage and 
retrieval will pass data among the software programs 
generating the products. Expert systems will also be 
required to  access and store information in these 
data bases. 

This environment will require that expert system 
verification be one component in the verification 
process of a complex multilanguage software system 
that includes conventional languages such as Fortran 
or C, the embedded expert system shell language, and 
tne embedded database query language. 

dynamics. For example, procedures 9 s  or deve oping 

fli ht  products and in support of flight d ynamics, they 
wi P I become sub'ect to the same controls. Often the 

R 6 d 

WHAT IS A VERIFIED EXPERT SYSTEM? 

If we are to  produce "ciorrect" expert systems, we must 
produce systems that reflect "correct" 
which for practical pur oses may be considered t e 
"best" knowledge, j u  dp gement, or decision-making 
capability the expert possesses or can derive. The 
verification problem as discussed herein is to  provide 
expert s stems that reflect this knowledge and will 

Responsibility for the "correctness" of knowledge 
belongs by definition to  the expert. In flight design 
this i s  analogous t o  responsibi l i ty for  t he  
requirements for  conventional f l ight  software 
belonging to  the flight designer. For the expert 
system, the knowledge must first be correctly acquired 
from the expert, a responsibility shared by the expert 
and the "knowledge engineer" or implementer. Then 
the implementer must reflect exactly what the expert 
means b creating a rule and fact base in the expert 

systems. The implementation must match the 
specifications. 

knowledT. 

never re r lect any contrary results. 

s stem s i ell language. This sounds very familiar to  
t 6 ose who have generated conventional software 

Verification of an expert system, then, must verify the 
adequacy and accuracy of  the knowledge base 
implementation accord i ng to  specific perf or ma nce 
criteria. 

LESSON FROM THE PAST (AND PRESENT) 

Existing flight desi n and dynamics software reflect 
various design and gevelopment software engineering 
methodologies that evolved over the years the 
software was developed, i.e., the design and 
development techniques and philosophies vary widely. 

Verification is generally considered to  be one part of 
the software engineering process, but the ease with 
which i t  can be accomplished has been recognized as 
bein dependent on the techniques and methods used 

one does design and implementation affects how one 
does verification. Approaches that encourage early 
discovery of errors reduce the time, design impact, and 
computer and human resources required for  
corrections. 

Verification first occurs prior to the initial delivery of 
software and it recurs each time the software is  
modified over i ts  lifetime. For some fli ht software, 
the lifetime can be considered essentiajy unlimited 
Modifications of  flight design software, whethe; 
procedural or expert system, can be expected as 

? New flight design requirements occur. 

0 The knowledge in some area so improves that it is 
desirable for the flight design software to reflect 
these improvements. 

0 Updates are made to  the Shuttle hardware or 
software. 

a Si nificant changes in the state of  the art of  
sogware and hardware occur that offer desired 
performance 'improvements. 

It is now recognized that the cost to  maintain fli ht  

development cost. Measures taken  d u r i n g  
development to reduce cost during maintenance are 
cost effective. 

A great deal of research has been done and effort 
made to  develop techniques to  support verification of 
conventional software. These techniques can be 
placed in  t w o  categories: (1) desi n and 
implementation techniques that either re d uce the 
likelihood of errors or make them easier to  find and 
correct; and (2) software development support tools 
that detect and remove errors from the code. 

The following techniques are in the first category: 

0 Project management techniques such as top-down 
development, design and code reviews, use of  
program libraries, etc. 

9 Pro'ect design techniques, such as top down design, 
code modularization, and, more recently, 

for t a e preceding development phases. That is, how 

software dur ing i t s  l i fet ime far  exceeds t 9h e 
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information hiding, object-oriented design, entity- 
relationship modeling, data flow diagrams, etc. 

0 Languages modifications which simplify code and 
make it exier to understand and debug; e.g., 
structuec' code,strong typing. 

0 Documentation standards, both external and 
internal to the code. 

0 Coding standards which not only standardize how 
code is written but which may also outlaw code 
considered to  be error-prone. 

The following techniques are in the second category: 

0 Development of static code analyzers and dynamic 
code analyzers. With static code analyzers, the 
code is parsed, and the parsed information is stored 
in such a manner that a postprocessor can cross- 
reference information t o  detect errors. An 
example is locating variables used but not set or 
vice versa. With dynamic code analyzers, the code is 
"instrumented" with "probes". Special-purpose 
code is inserted at strategic locations to  capture 
and output data of interest as a routine executes. 
This output is then postprocessed to  provide 
information to  aid verification. For example, it is 
possible to  determine what part of the code is 
executed and what is not for al l  test cases in a test 
case library (See reference 1) 

0 Improvement of compilers to  aid error detection. 

0 Development of test case libraries that satisfy such 
criteria considered beneficial t o  verification as 
exercising as much of the code as possible and 
doing "stress testingl'to exercise numerically 
sensitive code. 

Development of an automated software development 
and maintenance support environment for use in all 
phases of  program development, from program 
design to  code generation and program verification, IS 
presently occurring and may greatly impact the 
update of existing flight software systems and the 
creation of future systems. 

VERIFICATION TECHNIQUES FOR OPERATIONAL 
EXPERT SYSTEMS 

Enter expert systems into the Space Shuttle operations 
environment. A large flight design simulation could 
conceivably have "pockets of reasoning" for decision- 
makin at various points in i t s  execution. A decision 
mightse made to  determine the type of flight t o  
simulate, the characteristics o f  the sensors to  be 
simulated, or the environmental models to be invoked. 
Another decision m igh t  be made t o  o u t p u t  
recommendations a b o u t  t h e  s imulat ion o r  
information about i t s  results that help the flight 
designer. These pes of decisions presently occur at 

occur with a man in the loop and sometimes in an of - 
line mode. Therefore, one might consider them 
already a part of the software design, and it appears 
reasonable that the desi n of  an expert system 

/ defined points in 7 light design programs. They simp1 

decision-making capability B or a flight simulation can 

be accomplished by extending the conventional 
system design techniques. 

One technique that successfully attempted to do this is 
documented in references 2 and 3. The well-known 
hierarchical input process output (HIPO) technique was 
used to  develop requirements, construct the design, 
and support implementation of an expert system to 
demonstrate automated rendezvous. Verification was 
then conducted systematically because of the method 
of design and implementation. 

In the pragmatic Shuttle flight operations climate, 
where expert system design, development and 
verification is one part of the design, development, 
and verification of an existing or emerging software 
system using conventional and database query 
languages, it appears that it would be helpful t o  
identify where commonality in verification techniques 
may be applied and where uniqueness is required in 
the verification of the overall system. 

The interfaces between the symbolic reasoning (or 
expert system) "modules" and conventional modules 
or database tables or files can ident i fy type 
conversions required to  go from symbolic facts in the 
expert system module to  di ita1 data or other data 

information should be amenable t o  data f low 
dia rams, data dictionaries, or other datalinformation 

Language improvements can be found as revisions to 
expert system shells are released. Of great significance 
for flight design and support is the development of 
expert system shells that work on conventional 
hardware and al low the shell language t o  be  
embedded with conventional Ian uages. While this 
does not appear to  support veriyication directly, it 
allows simpler and more natural interfaces with the 
rest of the software system which will therefore be less 
error prone. 

A set of  preliminary experimental documentation 
standards and complementary coding standards have 
been defined (reference 4) for the Automatic 
Reasoning Roo1 (ART) developed b Inference, and a 
subset has been adapted to the Clps shell langua e 
developed at the Johnson Space Center (reference 3. 
The standards have been successfully adapted to  a 
number of expert systems being developed to  support 
flight design (references 6 and 7). 

The standards were constructed to support the later 
development of a maintenance tool. Conse uently, 
they were designed using ke ords that coula cue a 

comments. Two categories of  comments were defined: 
those to support user explanation of  the rules and 
those to  support the programmer in implementation 
and maintenance. Comments in the first category 
were intended t o  be extracted automaticall t o  

established were designed to  support an automated 
tool that could generate cross-reference information 
for rules, patterns, and variables. 

The standards are divided into three areas. First, a 
major file is defined which includes the history of the 

types in conventional modu B es and vice versa. This 

trac I C  ing techniques. 

parser to  the contents o r" the various types of 

produce documentation for the users. The stan d' ards 
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expert system and other pertinent information 
regarding supporting functions and files. All files 
should be loaded from this major file, which is the 
program driver. The second area is the declarative 
knowledge which consists o f  ART v iewpoint  
information and definitions of relations, facts, and 

lobal variables. The third area deals with procedural 51 nowledge, which consist of rules. The commenting 
template and explanations for this third area are given 
in figure 1. It has been found that the procedural 
template can be adapted to the design phase and used 
for knowledge reviews". An additional use found for 
the procedural knowledge template is training 
support. As the desi n expands from functional to  
various levels of detai?, the declarative and major file 
information can be developed as needed. 

The authors propose that a relational database 
management system could be used to  perform useful 
static analysis for error detection of rule-based expert 
systems and could be implemented independently or 
in conjunction with the proposed automation of the 
documentation and coding standards just mentioned. 
The relational theory allows semantic relations to  be 
conveniently expressed. Some of the simpler relations 
that could be expressed as relational tables are 
defined in figure 2. Table 1 lists various relationships 
that could then be determined by querying the tables. 
Some of the most aggravating problems that can occur 
during debuggin have to  do with simple typing 
errors that coul8 often be detected by locating 
occurrences of  a unique, one-time-only pattern. 
Properly constructed data base queries could isolate 
unique variable names that are likely in error. Further 
error detection possibilities exist that space does not 
permit exploring (e.g., see reference 8). 

Several other possibilities exist. It is apparent that with 
sufficient effort the tables in figure 1 could be utilized 
to  automatically construct the expert system shell 
code, which would be error free. The specific nuances 
o f  the languages in  expert system shells w i l l  
undoubtedly introduce aggravating problems in the 
implementation of  the above, but the goals seem 
achievable. 

Additionally, it is possible to express similar t pe of 

such as that captured by the system in reference 1. The 
query language could then verify interfaces across the 
two languages by queryin the applicable information 

relational information about the conventiona r code, 

in particular tables for eac 8 language. 

CONCLUSIONS 

As experts stems are integrated into the Shuttle flight 

project management and software development and 
maintenance plan that en tom passes convention a I 
procedural languages, the expert system shell 
language, and database query Ian ua es is needed so 

cost and results in the highest confidence in the 
software system over the life cycle of  the f l ight 
software. 

This goal seem achievable. Design and development 
methods and coding and documentation standards 

design an d support software packages, an integrated 

that verification can be accomplis %I? e a t  a minimum 

based on those used for procedural code have been 
applied to expert system prototypes with good results. 
Additionally, verification tools for expert systems 
similar to  those for procedural code but relying on 
database systems to simplify implementation appear 
conceptually t o  be beneficial and extendable to  
include conventional code. The latter method could 
possibly be extended to produce expert system shell 
code automatically. 

The ultimate validity of the expert system reasoning, 
however, lies with the expert. No amount of  
programmer effort can improve the judgement or 
reasoning communicated to the programmer by the 
expert. 

It is recommended that seriously developing and 
ref ining these methods as part  o f  prototype 
development will contribute greatly t o  a smooth 
transition of  expert system programs from the 
development to the Shuttle operations environment. 
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Guidelines and System Re uirements fo r  t he  A) LEFTHANDSIDETABLE 
’Onboard N a v i g a t i o n  TONAV) Console 
Expert/Trainer System, JSC-22433; Ar t i f ic ia l  RULE C ~ ~ ~ ~ ~ ~ N  CON DlTlON CLASSIFICATION 

Division, JSC, December, 1986. 

Knowledge Base Verification; Tin A. Nguyen, 
Walton A. Perkins, Thomas J. Laffey, Deanne 
Pecora; AI Magazine V.8, N.2, Summer, 1987. 

Intelligence Section, Mission Planning and Analysis NAME 
<condition-l > < (function, e.g. control,’test, 

<name> <condition-2 > pattern, external-function, 
etc.) > 

B) RIGHT HAND SIDE TABLE 

;;; GROUP 
;; <group-name> 
;; <narration on purpose, description of control, objective, 

assumptions, etc. 
;;; HISTORY AND RESPONSIBILITY: GENERAL 

(contains information common t o  all rules in the group) 
;; Nameof programmer(s): <name> 
;; Name of expert(+ <name> 
;; Created on: <date> 
;;; CONTROL FACTS 

; <fact> 
(those unique facts inherited from a parent group) 

(Used for cross-referencing) 
;;; PARENTS 

;; <parent group-name> 

(defrule < rule-name > 
;; If 
;; 
;; Then 
;; 
;; End 

<english sentence definition of the rule conditions> 

<english sentence definition of the rule actions> 

<actual rule body> ; simple programmer code comment 

1 ... ,,, 
I ,  

,, 
.. 
.. 
.. ,. 
#, 

I ,  

,,, 
, I  

.. 

... 

HISTORY AND RESPONSIBILITY: EXCEPTIONS AND UPDATES 
Name of programmer(S): <name> 
Name of expert(S): <name> (rule-specific exception 

Created on: <date> 
Modified by: <name> 
Modified on: <date> (rule-specific update) 
RATIONALE 
<narrative on heuristics, reasoning, rule-specific assumptions 
and limitations, etc. > 

to  general ) 

ACTION NAME SYNTAX 
RULE ACTION CLASSIFICATION 

<action > < (function, e.g. external 
function, pattern-set, pattern- <name> <action-2> retract, etc.)> 

C) RULE SALIENCE TABLE 

RULE CON DlTlON CLASS1 FlCATlON NAME 
<name > <number > 

Figure 2 - Proposed Expert System Static 
Analyzer Rule Data Base Format 

TABLE I - POSSIBLE USES OF EXPERT SYSTEM STATIC 
ANALYZER DATA BASE 

0 Reconstruct rules, including, for example all rules 
subject t o  the same condition 

0 Find patterns set on  LHS, but not used on RHS and 
vice versa 
Determine effect of new rules or rule changes on 
rule base 
- If new rule sets or retracts a pattern, other rules 

that use that pattern can be identified 
- Rule dependenciescan be identified. 
Find all rules with same salience, or ordered by 
increasing or decreasing salience 

0 Find all rules with same control pattern 
0 Find all external function calls and rules which 

made call 
0 Construct English description of rules. (Requires 

tables not shown in Figure 2.) 

Figure 1 -Template for Procedural Knowledge 
Documentation 
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